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Dynamics of coherent structures and turbulence of plasma drift waves
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A simple model based on the Hasegawa-Mima equation is used to study dipole vortex interactions
and turbulence of electrostatic drift waves in a plasma. It is shown that if nonlinear effects are im-
portant during vortex collisions, dipoles are broken into monopoles. Nonadiabatic effects also affect
dipole behavior, which can be destroyed by the instability of emitted waves (dipole vortex radia-
tion). Simulations of turbulence in both decaying and driven cases show the appearance of long-lived
monopole structures. These coherent structures contribute to stop the cascade of energy to large
scales, and then to reach a self-organized stationary state. Some numerical evidence is done that
Hasegawa-Mima turbulence has a long-time behavior that is much richer than the thermodynamic
equilibrium state observed in two-dimensional hydrodynamics. In driven turbulence, an important
departure from Gaussian statistics of vorticity fluctuations is found, giving some indication of inter-
mittency. Using various analyzing techniques, in particular the proper orthogonal decomposition,
we show that the turbulence can be characterized by a field of coherent structures, which dominates
the dynamics of the system, and random waves interacting weakly with the coherent structures.
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I. INTRODUCTION

One of the most interesting and intriguing features
of turbulence is its tendency to some kind of self-
organization [1]. The appearance of coherent structures
in two-dimensional (2D) [2-5] and three- {6,7] dimen-
sional fluid and magnetohydrodynamic turbulence [8,9] is
a well-established phenomenon from both experimental
and numerical studies (see, e.g., Ref. [10] for an account
on the concept of coherent structure from an experimen-
tal point of view). This approach to an organized state,
by the formation of coherent structures, is conceptually
different from the traditional inverse cascade hypotheses
[11,12].

It is the purpose of the present paper to study the
properties of such coherent structures in the case of elec-
trostatic turbulence in plasmas. A comprehensive review
on drift plasma turbulence can be found in Ref. [13]. In
particular, we are interested in understanding the mech-
anisms of saturation, if they exist, of the inverse cas-
cade. One possibility, without introducing a supplemen-
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tary dissipation at large scales, is just the generation
of vortex structures. Indeed, the generic nonlinearity
in plasma (or fluid) two-dimensional flows is a Poisson
bracket between some generalized vorticity € and the
stream function ¢ (or the electric potential in plasma).
The coherent structure is a solution of an equation of the
form

Q = F(¢), (1.1)
which precisely weakens the nonlinear term, suppressing
by the way the cascade source. The simplest model of
electrostatic waves in a plasma is given by an evolution
equation for the potential ¢(z,y,t) taking the form

A+ D)o+ 50+ 8,10 = w2, (12)

where the operator L is just —A for the Hasegawa-Mima
[14,15] model, and

1o}
L= —A+60(00+A)8—y, (1.3)

for the Terry and Horton model [16-18], where nonadia-
batic electron response is taken into account through the
terms in dgp. The terms in v add some large-wave-vector
dissipation, and on the other hand if ¢ # 0 dissipation is
also present at small wave vectors. Units were chosen in
such a way as to obtain the drift velocity vq = 1. Length
is measured in Larmor radius p,, time in (L, /w.), where

6717 ©1995 The American Physical Society



6718

L, is the density gradient length and w, is the cyclotron
frequency, the potential fluctuations ¢ are measured in
units of (T./e)(ps/Ln).

Equation (1.2) was introduced in the study of drift
waves in a tokamak edge plasma. It can be interpreted as
a simplification of the Hasegawa-Wakatani system of cou-
pled equations for the density and potential fluctuations
[19], where only the unstable branch of the dispersion re-
lation was retained. This unstable branch describes the
phase shift between density and potential fluctuations.
Certainly this equation is too simple to describe the com-
plicated processes present in the tokamak, but it contains
the essential ingredients that play a fundamental role in
plasma turbulence, and is then an appropriate model to
investigate the physics of these processes.

Equation (1.2) contains many interesting features: lin-
ear dispersive waves and a range of unstable modes giving
a source of free energy; small scale dissipation providing
a sink of energy to the system; a “vector” nonlinearity,
the Poisson bracket [ , ], responsible for the generation
of coherent structures. Instability, damping, and nonlin-
earity, acting at different spatial and temporal scales can
produce a very rich variety of phenomena, characteristic
of plasma turbulence.

We can see that defining a generalized vorticity Q =
A¢ — ¢ + = the Hasegawa-Mima equation can be written
in the form

1s]
5£Q+ [¢1Q] =0,

(1.4)
and then Eq. (1.1) gives the stationary solutions. Equa-
tion (1.4) is much like the Euler equation of hydrody-
namics, in which case Q@ = A¢ is the usual vorticity with
—¢ the current function.

The understanding of coherent structures is essential
for the interpretation of turbulence from a dynamical
point of view. In addition, coherent structures modify
the statistical properties of the flows and in some regimes
dominate their dynamics [13,20,21]. Stationary vortex
solutions of the Hasegawa-Mima equation are well known
[21-24]. Although dipole vortices were extensively stud-
ied, their relevance as elementary constituents of turbu-
lence, is dubious [18,24,25]. However, the investigation
of dipole collisions and stability may give some insight
in the behavior of nonlinear structures (see Sec. II). It
is important to point out that dipoles are the only (sim-
ple and localized) fully nonlinear solution of (1.2). The
study of the dynamics of dipoles provides, in a controlled
manner, a way of analyzing how perturbations may af-
fect more general vortices. In Sec. II we investigated
dipole interactions in both conservative and nonadiabatic
regimes.

We also studied in this paper the turbulent regime for
pure decaying and driven-damped equations. A com-
parison of some related hydrodynamics systems is made.
One important question addressed in Sec. III is whether
Hasegawa-Mima decaying turbulence evolves in a simi-
lar way as 2D hydrodynamics [26,27], in the sense that
the system approaches a state of thermodynamic equi-
librium. Both Euler and Hasegawa-Mima equations can
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be put in a form of frozen generalized vorticity equation;
both equations have an infinity of integrals of motion.
However, there are two important differences: (i) the
Hasegawa-Mima equation has a natural scale length (the
Larmor radius, which gives rise to the term in ¢ in the
generalized vorticity @ = A¢—¢+z) and (ii) it allows for
linear dispersive waves (related to the nonlocalized term
of the generalized vorticity Q. As we will see these facts
can affect the long-time evolution of the system.

In two-dimensional driven-damped electrostatic drift-
wave turbulence the first problem is to determine if a
stationary state is reached. Indeed, for the simple model
(1.2), where instability at intermediate and low wave
numbers and “inverse” cascade work together, the ques-
tion arises of the saturation of energy as the system
evolves [28]. We performed (Sec. IV) high-resolution,
long-time simulations of the Terry and Horton model,
to investigate this stationary state, which is effectively
realized. In particular, we analyzed its statistical prop-
erties using different techniques, as the proper orthogo-
nal decomposition (POD) [29-31] and conditional aver-
aging [32]. Moreover, in relation to recent experimental
evidence on intermittency in edge plasma [33], we stud-
ied the probability distribution of potential and vorticity
fluctuations.

Before detailing our simulations in the following sec-
tions, we give some technical elements about the code
used. The numerical integration of (1.2) uses an an-
tialiased pseudospectral method [34] on a periodic square
mesh of typical size 2562. The time stepping is performed
using an improved version of the Gazdag leap-frog cor-
rected method [35]. Our method integrates exactly the
linear part of the equations, which is essential to cor-
rectly describe unstable systems. Errors are monitored
using the energy balance equation, the time step was cho-
sen in order to keep energy balance correct to a factor of
107%; the typical time step is 1073-10~%. We found this
requirement necessary to obtain reliable and reproducible
results.

II. VORTEX INTERACTIONS

The Hasegawa-Mima equation admits a class of lo-
calized stationary solutions in the form of multipoles
[13,24,36]. The simplest dipole solution we used in the
simulations is given by

_ J [B+ CJi(pr)]cosf forr < ry,
¢(r,0) = { AK, (kr) forr > rg

where J, K are Bessel functions and r? = z2% + (y — vt)?,
0 are polar coordinates in the reference frame of dipole
velocity v

A = ’U’I‘()/Kl(k’l‘o),

(2.1)

B = vro(1 + k%/p?),
and
C = vrokz/szl(p'ro).

Moreover, k = (1 — 1/v)'/? and p are related by a “non-
linear” dispersion relation
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Kz(kro) _ —Jz(pT‘o)
kKl(kTg) le(pTo) )

Dipoles are then specified by the two parameters velocity
v and size ro. It is worth noticing that a function in the
form of a plane wave

o(z,y,t) = Aexp(—iwgt + ik - 1), (2.2)

where wy satisfies the dispersion relation, is a solution
of the Hasegawa-Mima equation, and more generally a
solution of (1.2). This property that an isolated linear
mode is a full “nonlinear” solution is specific of the Pois-
son bracket form, and in contrast to the usual steeping
effect of the scalar (as in Korteweg—de Vries equation)
nonlinearity. As a consequence, an initial isolated mode,
even if it is unstable, does not couple with other modes,
and its evolution is trivial.

In this section we will study the interaction of dipoles
to get some insight into the dynamics and properties of
coherent structures. We separate the two cases of the
pure conservative Hasegawa-Mima equation and its gen-
eralization by Terry and Horton.

A. Dipole collisions in the conservative case

One interesting numerical result about dipole collisions
is that they can behave as solitons, as shown by Makino,
Kamimura, and Taniuti [22]. They used dipoles of re-
spective velocities vy = 3 and v_ = —5; and of the
same size g = 0.5, the dipole amplitude is then around
3 (using units where the drift velocity is equal to 1).
After the head-on collision, the dipoles recovered their
initial shape and moved again as translating steady so-
lutions. However, in an overtaking collision of dipoles
with unequal radii, McWilliams and Zabusky [23] ob-
served their merging. These contrasted results show that
dipoles are not exactly solitons in integrable systems, and
that the question of their stability is open [25,37]. In fact,
in most turbulence simulations, spontaneous generation
of dipoles is not observed, and rather monopolar struc-
tures are present. We study the interaction of dipoles in
the Hasegawa-Mima case for a wide range of parameters.
One characteristic result is that dipole collisions can be
classified using a parameter

r= 7'NL,

Tc

(2.3)

which is the ratio of two characteristic times, a time
related to the nonlinearity, the vortex turnover i, =
r3/|#|, and a collision time 7. = Aro/Av where Arg is
the cross “section” and Awv the relative velocity, |¢| is
the amplitude of the vortex. The parameter I is a mea-
sure of the role of the nonlinearity during the collision
time. When I" > 1, as in the Makino, Kamimura, and
Tamiuti, case, the collision is almost elastic (solitonlike).
In the opposite case, I' < 1, nonlinearity is strong dur-
ing the collision. A simulation with I' <« 1 is presented
in Fig. 1. Initially two dipoles are separated wide apart,
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the box size is 55 x 55 and the distance between the
dipoles is 20. Their parameters are vy = 2, r, = 6, and
v_ = —1, r_ = 6, respectively. Then their relative ve-
locity is rather low [the region 0 < v < 1 is forbidden

Potential, t =0

T T T

401

30+ 4

20+

Potential, t = 70

50+

40 -

20

FIG. 1. Interaction of two slow and high amplitude dipoles
in the Hasegawa-Mima case. Contour plots show the system
before (top), t = 0, and after the collision (bottom), t = 70,
where two monopoles were formed. This contrasts with the
solitonlike behavior of the interaction of fast dipoles. The
dipole parameters are vy =2, ry =6, v_ = —1, r_ = 6.
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to dipoles, k = (1 — 1/v)'/? becomes imaginary in this
region|, and their amplitudes are about 55, thus a rough
estimate of ' is I =~ 0.1. Both initial dipoles are modified
by their interaction. The positive velocity dipole (D)
separates into its two components during the collision,
but they join together again, after the collision. This
new dipole (D) is slightly different from the initial one;
its amplitude and size are decreased. The other dipole,
traveling with a negative velocity (D_) splits, after the
collision, into two monopoles (M) (the sign index de-
notes the translation direction +y¥):

Dy +D_ — My, + M3 + D!, + (radiation).

It is easy to identify the newly formed structures as
monopoles; their velocity was inverted with respect to
that of the parent dipole, and moreover, both positive
and negative vortices travel at a forbidden speed for
dipoles, in the region where linear waves can propagate.
They also have a slight tendency to separate. While
monopoles translate, they leave a wake of drift waves.
The fact that during the collision some amount of radia-
tion is emitted might be fundamental to the “irreversible”
or inelastic character of the collision. Although isolated
dipoles and linear waves interact weakly, the translation
velocity of dipoles is larger than the wave phase velocity,
during collision time dipoles are strongly perturbed, and
in particular their velocities can enter the region of drift
waves, allowing then the interaction.

In summary, for I' >> 1 dipoles are rather robust and
collisions are elastic, and for I' <« 1 breaking of dipoles
and formation of monopoles appears to be the common
case. We point out that we investigated these processes
for a variety of dipole parameters, obtaining the picture
just described, provided I' is different from one. Pre-
cisely for I' & 1 one may expect an interaction process
much more complex. We choose dipole parameters to
obtain a I' slightly smaller than 1 (I' = 0.7): vy = 3,
ry = 144, v_ = =5, r_ = 1.13; the amplitudes are
about 9. Figure 2 is a plot showing a sequence of poten-
tial contours at times numbered from 1 to 6, following
the collision history. Only a few contour lines around the
extremal amplitudes are drawn for clarity, but at lower
amplitudes some noise grows. Breaking and exchange of
the dipole poles is produced at time labeled 2. This pair-
ing of the positive and negative parts of the dipoles is
followed by an oscillatory trajectory of each of the newly
formed “dipoles,” characteristic of biased dipoles [22].
The interaction process shown in Fig. 2 can be summa-
rized by

D+ +D_ — D_1 + D_.z + (ra.diation).

On can think that the differences observed are not re-
ally related to the value of I" but that they are inherent
to the individual dipole parameters: very large dipoles
break, small ones are more stable. In fact, the nature of
the perturbation is very important (this is given by the
collision time in the parameter I'). To investigate this
point we took the same dipoles as before, the marginal
case I' ~ 1, and performed a collision with an impact
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FIG. 2. Head-on collision of two dipoles in the

Hasegawa-Mima case. Marginally fast collision case. A se-
quence of times labeled from 1 to 6 is shown. When the non-
linear time scale is of the order of the collision time scale, the
dipole interaction is very complicated. Here by an exchange
process two dipoles are formed. The dipole parameters are
vy =3, 74 =144, v_ = -5, r_ =1.13.

parameter different from zero. Obviously, the nonlinear
time — intrinsic to dipoles — is not changed, but the
collision time is reduced as the cross section diminished,
giving a larger value of I'. The result is shown in Fig. 3.
The collision, as expected, is almost elastic,

Although some waves are produced, the two dipoles are
practically not modified by the interaction. The same
type of collision with an impact parameter the size of
the dipole radius was studied by Horton [21]. However,
in this case T" is in the inelastic regime. In contrast to
Fig. 3, in the simulation by Horton, like regions of vor-
ticity, which are directly in contact during the collision,
merge to form an isolated monopole.

In conclusion to this discussion on the interactions of
dipoles in the conservative (Hasegawa-Mima) case, we
observe, taking dipoles as a paradigm of more general
vortices, that nonlinear coherent structures are weakly
perturbed by waves and create other structures by col-
lision. We observed the formation of different types of
coherent structures and in particular, the monopoles of
Fig. 1. We remark that these monopoles are almost cir-
cular and that the relation of the vorticity (A¢) and po-
tential is linear inside the monopole, as can be seen in
Fig. 4. This means that the Poisson bracket becomes
small, and then the total potential can be split into two
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FIG. 3. Head-on collision of two dipoles as in Fig. 2 but
with an impact parameter equal to the radius of one dipole.

components: the vortices and the waves, both kinds of
objects interacting weakly.

Therefore, monopoles are close to the solution of the
equation of freezing of the generalized vorticity (Q
A¢—¢+z). As anticipated in the Introduction, nonlinear
interaction can result in the formation of coherent struc-
tures, solutions of Eq. (1.1), rather than evolving as in
an “inverse cascade” scenario, to a random state. These
coherent structures can be considered in some sense as
“particles,” they can be characterized by only a few pa-
rameters like position and velocity and some internal de-
grees of freedom (amplitude, size). The reason for its
robustness can be found in the fact that they interact
only weakly with waves, because their velocity is gen-
erally different from the phase velocity of waves, then
“resonant” interaction is negligible.

Monopole Vorticity, t = 70

10 T
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B. Dipole collisions
in the unstable-dissipative case

When nonadiabatic effects are taken into account, the
linear dispersion relation deduced from Terry and Horton
equation contains the growth rate (see Fig. 5),

_ Bo(k? — co)kZ — vk*(1 + k?)
(14 k)2 + 62(k? — co)?k2

Ve (2.4)

For large values of k the viscosity dissipation dominates,
whereas for smaller values of k the growth rate becomes
very anisotropic. Its maximum, reached at intermediate
values of k, and k., =~ 0, is proportional to &y, and a pos-
itive ¢o gives large-wavelength dissipation [20]. In Fig. 5
we plot the growth rate for typical parameters, showing
its anisotropy at low wave numbers.

It is important to investigate the behavior of coher-
ent structures, in our case the dipoles, when nonideal
effects like instability in a range of modes and large k
dissipation are present. In order to study these effects
we simulated the head-on collision of slow dipoles, using
the same initial condition as in the Hasegawa-Mima case
of Fig. 1. We considered two extreme cases, with small
and large dissipation rate, both with a positive growth
rate at intermediate k. At first glance, one can think
that, for a given rate of instability, when dissipation is
weak, dipoles would be destroyed. In fact, the actual be-
havior of dipoles is more complicated, the instability is a
linear process that is more effective on linear drift waves
than on nonlinear structures. We will see that the ability
or inability of vortices to emit drift waves is essential to
their stability.

1. Small dissipation case

The maximum growth rate is about ~; = 0.1, the dis-
sipation coefficient is ¥ = 0.01. The temporal evolution
of the total energy shows that the system turns out to
be globally dissipative, the energy is monotonically de-
creasing in time. Figure 6 shows the electric potential at
different times. Qualitatively, the state after the collision

Vorticity
t
T

T

FIG. 4. Detail of the monopole of Fig. 1
(left), vorticity field, and (right), vorticity vs
potential showing a strong correlation.

20
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40 60
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FIG. 5. Growth rate of the drift wave instability described
by the Terry-Horton model, as a function of k; and k,. Con-
tour plot, the maximum is about 0.15. The growth rate is
anisotropic at low k but becomes isotropic at larger k. Pa-
rameters are v = 0.15, §o = 1, co = 0.

is similar to the one for the ideal case: the positive veloc-
ity dipole survives after the collision, while the negative
velocity one splits to form a pair of monopoles. However,
two main differences with respect to the pure Hasegawa-
Mima case are worth noting. First, the trajectory of the
vortices during the collision differs in that the positive
velocity dipole passes directly inside the negative veloc-
ity one, while in the dissipationless case dipoles are mo-
mentarily broken and describe a large half circle before
partially recombining. Second, the wake present in the
ideal case is now less developed. The positive velocity
dipole is progressively damped.

2. Large dissipation case

We will see that increasing the dissipation rate can
result in destruction of the dipole. For the sake of com-
parison with the results in the small dissipation case, the
maximum growth rate is of the same order of magni-
tude as before, the dissipation coeflicient is instead one
order of magnitude larger, v = 0.15. One consequence
of this change is that the maximum of the growth rate
is slightly shifted to lower k. The temporal evolution of
the total energy differs from the previous low dissipation
case. Surprisingly the total energy, after an initial fall,
increases and the system becomes unstable. We remark
that, despite the change of parameters initially the dipole
is only damped, and the system is (at less initially) glob-
ally stable. However, as shown in Fig. 7, the evolution of
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the system changes dramatically. The negative velocity
dipole reverses its velocity in the first stages of the sim-
ulation, and the collision does not actually take place.
Dipoles emit a large amount of drift waves. Both dipoles
are destroyed, and more significantly, the wake of drift

Potential, t=8
50 T T r :

45t .

35+

30+

15+ B

10 q

O 1 1 1 Il
0 10 20 30 40 50
min: -48.73

X max: 49.22

Potential, t=18
50

401
350 .

30+ T [0 4

20+

15+

O 1 1 1 1
0 10 20 30 40 50
min: -43.75

X max: 44.26

FIG. 6. Head-on collision of two dipoles in the
Terry-Horton model. Low dissipation case. Contour plots
at (top) t = 8, the collision time, and (bottom) ¢t = 18. The
final state is similar to the one in Fig. 1, but the trajectory
of dipoles is different during the collision, no wake is visible.
Parameters: o = 1, v = 0.01.



52 DYNAMICS OF COHERENT STRUCTURES AND TURBULENCE ...

Potential, t=16
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45+

40+
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15+
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min: -35.33
X max: 35.31

collision

FIG. 7. Head-on of two dipoles in the
Terry-Horton model. High dissipation case. The initial state
is the same as in Fig. 6. Contour plot at ¢ = 16. Strong emis-
sion of unstable drift waves destroys the vortices. Parameters:
50 = 1, v = 0.15.

waves is sensitive to the instability of the system and
starts to grow. The growth of the total energy may be
explained by this instability of the wake.

These simulations illustrate clearly the influence of the
wave field on the coherent structures. Due to a strong
damping, the dipole is slowed, and then enters the region
of wave propagation: the closer the velocity of the vortex
to the phase velocity of waves, the stronger their interac-
tion. The result of this interaction is the generation of a
wake of unstable waves. This does not mean that long-
lived vortices cannot survive in this case; this depends
on the actual parameters of the dipole (or other kinds
of vortices). In fact, the long-time evolution of the sys-
tem, as we will see in the sections devoted to the study
of turbulence, tends to form relatively stable coherent
structures.

III. DECAYING TURBULENCE

As mentioned in the Introduction, the Euler equation
of 2D hydrodynamics and the Hasegawa-Mima equation
have the same kind of nonlinearity, but they differ in lin-
ear properties. The Hasegawa-Mima equation possesses
a real part of the frequency describing drift waves and
an intrinsic spatial scale. In the case of pure decay-
ing random initial conditions (with a Gaussian distribu-
tion and a broad spatial spectrum), the Euler system is
known to evolve to a kind of thermodynamic equilibrium
state [26,27,38,39]. Omne can naturally ask whether the
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same type of asymptotic state can be reached for the
Hasegawa-Mima flow.

The Euler system evolution is characterized by an in-
verse cascade of the energy and the further development
of coherent structures. Merging of these structures is
pursued up to the formation of a pair of vortices fill-
ing the available space (the mean value of the vorticity
is conserved). The asymptotic state, which is close to
the sinh Poisson equation [27], can also be interpreted
in terms of point vortices dynamics. Point vortices in-
teracting with a logarithmic potential are a weak (exact)
solution of the Euler equation. Equal sign vortices tend
to form bounded systems, and then to accumulate, con-
stituting a large unique structure, well separated from
the opposite sign vortex [40]. Inverse energy cascade and
formation of coherent structures are also well known for
the Hasegawa-Mima flow [18].

However, although the Hasegawa-Mima equation may
be written in the form of an equation for the conservation
of a generalized vorticity 2 = A¢ — ¢ + = along stream
(potential) lines [Eq. (1.4)], exact point vortex solution
does not exist. Indeed, the last term in the generalized
vorticity, which reflects the existence of waves, prevents
strict localization (Dirac function) of this vorticity. Al-
though some point vortex models were proposed [41-43]
it must be emphasized that they are not an exact so-
lution of the original equations, and more importantly,
they do not preserve the motion integrals, and as a con-
sequence they cannot describe the long-time behavior of
the system.

One can loosely say that the Hasegawa-Mima equation
not only has point vortex degrees of freedom (associated
to the A¢ — ¢ part of the generalized vorticity) but it
also has supplementary degrees of freedom associated to
waves (z term of Q). The long-time state of the sys-
tem may be essentially different from the pure point vor-
tex gas. Such a system of interacting point vortices and
waves can have very complex and likely nonstationary
asymptotic states [18]. On the other hand, the introduc-
tion of an intrinsic length scale (represented by the term
—¢ of Q) can also influence the thermodynamic prop-
erties of the system, in this case vortices interact with
short-range forces (a modified Bessel function replaces
the usual logarithm).

Moreover, by the interplay of linear and nonlinear
mechanisms, the system dynamically may develop a char-
acteristic (nonlinear) scale, basically the coherent struc-
ture size, independent of the box size, and then evolve
to a state where coherent structures (associated to small
values of the Poisson bracket) and waves coexist; the in-
teractions between the two objects being weak, the sys-
tem attains a quasistationary state.

To investigate the long-time behavior of the Hasegawa-
Mima flow we performed a series of extensive numeri-
cal simulations with various initial conditions (random
phased potential with power-law specirum), box sizes,
and dissipation coefficient: (i) Box size 322, dissipation
coefficient ¥ = 10~2, potential spectrum |¢g|?2 ~ k~1°
(corresponding to a k=7 energy spectrum), simulation
time t = 500. (ii) The same as (i) but with a box size
of 642 to allow testing of the influence of the box in the
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system’s evolution, t = 700. (iii) Box size 642, smaller
dissipation (v = 107%) to compare with (ii) and test the
influence of viscosity, the potential spectrum is as before
|px|? ~ k10, ¢t = 500. (iv) The same as (iii) but with an
initial spectrum richer in small scales: |¢|?> =~ k¢, close
to the inverse cascade spectrum, t = 800.

Box sizes are large enough to avoid the influence of
boundary conditions (the linear scale is 1), and as the
mesh size is 2562, we have reasonable numerical precision
on small scales. The simulation times (up to 800 peri-
ods) were chosen to obtain an almost stationary state,
not only for the statistical “macroscopic” properties but
also for the spatial structure. The slight dissipation used
allows the total energy to be practically conserved during
the system evolution. Some of the results are presented in
the form of contour plots of the potential (¢) and vortic-
ity (A¢) fields. Solid lines are positive values and dashed
lines represent negative values. The maximum and min-
imum of the potential are written at the bottom of the
figures. The time is generally specified in the title of the
figure.

A. Case (i): Small box simulation

The system evolves by successive merging steps up to a
state where only two vorticity structures of opposite sign
survive. In Fig. 8 we show contour plots of the poten-
tial and the vorticity at time ¢ = 500. Although at first
sight it seems that the situation is similar to the Euler
2D system, the vorticity field is very complicated, and it
is not possible to say that the system reached any kind of
“thermodynamic” equilibrium state. Indeed, the vortic-
ity field is evolving in time, interactions and deformation
of the structures are observed, and the spectrum of scales
is broad with a random component. This is in contrast
to the Euler situation where the vorticity field reaches
an almost static and ordered state. The last generation
of merging processes occurred at ¢ ~ 300, then for 200
periods (turnover time of an eddy of size and amplitude
unity) the vortices were convected and deformed by the
flow but conserved, and no tendency to an ordered, static,
configuration appeared. The lifetime of these structures
is much larger than its own turnover time by at least a
factor 100. It is also important to note that the size of the
monopolar structure is smaller than the box size, having
a radius of about 5 length units. Therefore even for this
modest box size the field can be characterized by a su-
perposition of coherent structures and waves interacting
weakly. We remark that the phase velocity of drift waves
with wavelength comparable to the vortex size is about
0.4 smaller than the monopole velocity, which is about 1.

B. Case (ii): Large box simulation

The ability of the system to create a definite nonlinear
scale is essential to its long-time behavior independent
of the box size. Some evidence of this was given in case
(1), where the generated coherent structures were smaller
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than the box size. However, in this case only two struc-
tures remained, and then we can ask whether the number
and size of the coherent structures were independent of
the box. To investigate this point we performed a second

Decay Turbulence, t=500

30
min: -19.76
X max: 19.8

Vorticity

min: -1.651
X max: 2.326

FIG. 8. Decaying turbulence simulation, case (i). Poten-
tial (left) and vorticity (right) contour plots at time t = 500.
Merging of the last vortices occurred at t ~ 300. For more
than 160 turnover times of the largest coherent structure, the
number of vortices and the global spatial pattern remain un-
changed. We see that potential and vorticity are well corre-
lated (cf. Fig. 4). The coherent structure size is about five
length units.
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simulation of decaying turbulence with the same parame-
ters as in (i) but with a box of 642 area. The initial stages
of the evolution are dominated by the increase of the
vortex size, through various generations of the merging
process. As a result a few coherent structures, monopole
and dipole vortices, are formed. The lifetime of these
structures is extremely large. The fundamental obser-
vation is that the size of the resulting vortices is of the
same order as in the smaller box simulation. This fact
supports the idea of a nonlinear selection of the vortex
size, independent of the boundary conditions.

Figure 9 shows the potential (left) and the vorticity
(right) at ¢ = 480. The number size and form of the
structures are almost the same at the two times. Es-
sentially monopolar vortices are present, notably the one
at the bottom of the plots with an amplitude of —28.
All these structures are traveling in the positive direc-
tion (from the left to the right of the figures). In Fig. 9
we observe a definite correlation between potential and
vorticity, a characteristic property of coherent structures.
The state of the system is roughly stationary; no qualita-
tive changes are observed up to time ¢ = 700. The num-
ber and the shape of the larger structures are conserved
during this time. We see that a few isolated structures
are present in the field, with a size of 5, as in case (i),
much smaller than the box length 64. Therefore, cases (i)
and (ii) show the appearance of long-lived coherent struc-
tures with a characteristic size independent of boundary
conditions. These structures are of the same type as the
monopole of Fig. 4. This result was obtained with a rel-
ative high value of the viscosity; we now want to test
this hypothesis in the case of low dissipation, when small
scales can almost freely develop in the evolution of the
system.

One important consequence of the large dissipation
rate is that the enstrophy is not conserved: the distribu-
tion of the vorticity can evolve from the initial Gaussian
to some other distribution. The appearance of stretched
vorticity gradients is a signature of non-Gaussian statis-
tics. Indeed, in Fig. 10 we show the histograms of the
vorticity and one component of the vorticity gradient
(both components have the same statistics), which de-
viates significantly from the normal distribution. In the
next paragraph we study the low dissipation rate case,
for which enstrophy is almost conserved.

C. Case (iii): Low dissipation

The parameters of the simulation were chosen to vali-
date the results of case (ii) when a very small dissipation
is present (v = 10™%); this low value of the viscosity co-
efficient implies damping of only a few large k& modes,
comparable with the Fourier cutoff length — related to
space discretization. Other parameters are similar to case

ii).

( ')I‘he first important result is that, despite the fact that
initially no small scales are present (a k10 initial spec-
trum was adopted), these small scales are dynamically
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created, supporting the existence of some direct cascade
mechanism in addition to the usual inverse energy cas-
cade paradigm. The second observation is that the gen-
eral large-scale behavior of the system is unchanged with

)
60
min: -29.67
X max: 21.44
Vorticity, t=480
>

10 30 40 50 60
min: -2.307
X max: 1.997

FIG. 9. Decaying turbulence simulation, case (ii). Poten-
tial (left) and vorticity (right) contour plots at time t = 480.
Coherent structures of the same type as in Fig. 8 are present.
Notably their size is of the same order of magnitude, showing
that it is independent to the box size. Although the potential
shows a very simple pattern, the vorticity shows a rich variety
of small scales and elongated gradients.
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respect to the previous case: formation of coherent struc-
tures approaching an approximate stationary state; the
size of the structures is always of about 5 at compa-
rable times (Fig. 11). Third, the small-scale activity
changes the statistical properties of the flow. In the
regime where small scales are damped, and the flow is
completely dominated by the coherent structures, prac-
tically unperturbed, the distribution probability of the
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FIG. 10. Histograms of the vorticity (top) and one com-
ponent of its gradient (bottom). For comparison we show
the Gaussian distribution, appearing as an inverted parabola
(dotted line), and the values of the skewness and kurtosis.
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Decay Turbulence, t=500

B

60
min: -26.24
X max: 26.99

FIG. 11. Decaying turbulence simulation, case (iii). Poten-
tial contour plot at ¢ = 500. In this case viscosity is very low
and then small scales are enhanced. Although large structures
are present, small scales dominate the vorticity field, giving
an almost Gaussian distribution.

vorticity is very far from being Gaussian, large ampli-
tudes are too “frequent,” the gradients are concentrated
between rather flat vorticity profiles. Diminishing the
damping allows small scales to develop and, notably, the
vorticity histogram becomes Gaussian.

In contrast, the probability distribution of the poten-
tial amplitudes, less sensible to small scales than vor-
ticity, remains non-Gaussian. It is worth noticing that
without dissipation the initial vorticity distribution (in
our case Gaussian) must be conserved by the flow, not
the potential distribution. This is a manifestation of the
infinity of invariants of the Hasegawa-Mima equation.

Therefore, we can conclude from these results, and the
ones presented in the previous paragraph, that the dissi-
pation rate influences the statistical properties of decay-
ing turbulence, but the behavior of large-scale vortices
remains the same (lifetime and size of the largest struc-
tures is equivalent in both cases). In the high dissipa-
tion rate regime significant intermittency is observed (in
the sense that probability distribution functions of the
fields are essentially non-Gaussian). Moreover, when the
dissipation rate is negligible, conservation of generalized
vorticity guarantees the Gaussianity of the fields (even
higher moments of the vorticity remain Gaussian in this
simulation). The study of the statistical properties of the
coherent structures and the background of small fluctu-
ations is the issue of the following paragraphs.



52 DYNAMICS OF COHERENT STRUCTURES AND TURBULENCE. ..

D. Case (iv): Low dissipation and large spectrum

In the last case we investigate the influence of the ini-
tial condition on the evolution of the system. We re-
leased the restriction of an initial large-scale field and
simulated the evolution of a broad k spectrum. We also
take a slightly smaller initial amplitude and a viscosity
of 107%. Figure 12 shows a sequence of the potential
between t = 500 and 800.

Following the potential evolution from ¢ = 500, where
there is a prominent positive monopole, we see that
this monopole slowly associates to another (negative)
monopole to form a dipolar structure: polarity is in cor-
respondence with the direction of motion; the amplitudes
of the poles are progressively balanced. During this time,
the double-peaked negative structure tends to split into
two parts: one merges to the positive monopole to form
the dipole, the second one forms an isolated monopole.
This splitting process is achieved at t = 650.

We note that also in this case the overall pattern — the
large-scale features — are similar to other regimes. At
the final simulation time ¢ = 800, the potential is domi-
nated by essentially two coherent structures: a monopole
and a dipole. These two vortices are present for about
300 periods. Both are moving in the positive-y direc-
tion, at a velocity of the order of the drift velocity. The
dipole velocity is slightly larger than the monopole ve-
locity, which is within the error, equal to the drift phase
velocity.

Observation of the breaking of a large structure into
distinct coherent structures is fundamental to the under-
standing of the quasistationary regime attained by the
evolution of a random initial condition. Indeed, we men-
tioned that the system stay for very long periods in a

Deacaying Turbulence
60

=500
©

40
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state characterized by the presence of large vortices and
a field of waves interacting weakly. Although initially the
system evolves through successive generation of growing
vortices, very large vortices tends to break out. These
two competing mechanisms are responsible for the ob-
served “saturated” state.

E. Spectrum and proper orthogonal decomposition

One indication that the system reaches a quasistation-
ary state is the persistence of its statistical properties,
such the Fourier power spectrum. In Fig. 13 we show the
potential spectrum W;, and Wy, integrated over k, and
k., respectively, at times 500 and 800. We observe that
the overall form and the value of the slopes at interme-
diate and large k are practically the same.

We can also measure the spatial coherence of the
potential using the proper orthogonal decomposition
(POD) [29-31]. This consists in projecting the field

M
é(z, y) = Z Aan(CIZ)Yn(y) ) (3‘1)

n=1

where X and Y are orthogonal eigenfunctions of the cor-
relation functions,

C, = / dy dé $(€ + ,v)B(€,y)
and

c, = / dz dn $(z, 1+ v)(x, ),

FIG. 12. Decaying turbulence simulation,
case (iv). Sequence of the potential contour
plots at times ¢ = 500, 520, 550, and 800.
We remark on the high stability of struc-
tures, whose liftime is of hundreds of turnover
times. The “dipole” of the last figure ap-
peared at t =~ 650. The drift velocity of struc-
tures in the positive y direction is about 1.
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respectively. In practice, we consider the field ¢(z,y) as
a matrix ® = ¢, , where the indices span the compu-
tational mesh, and form the correlation matrices ®®T
and ®T® whose eigenvectors are X and Y, respectively
(i.e., ®®TX = A2X and similarly for Y). This tech-
nique is also known as the singular value decomposition:
® = XSYT, where S is a diagonal matrix containing the
eigenvalues A. The weights A,, are sorted in decreasing
order, such that high correlated structures are related to
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the first terms in the decomposition. For a random field
the POD spectrum follows the Fourier spectrum, but for
correlated fields the eigenfunctions can be very different
from Fourier modes, and in particular they can have a
large Fourier spectrum, indicating that different scales
are correlated. These properties of the POD are used to
detect the correlated part of the signal (here the coher-
ent structures) and to separate this coherent component
to the noisy fluctuations. In Fig. 14 we represented the
distribution of the weights A,,, for the electrostatic po-
tential at t = 800 (see Fig. 12). The distribution of A,
shows that most of the information is concentrated in a
few POD components. This statement is confirmed by
the reconstruction of the signal using only the first four
modes (M = 4) of the POD (Fig. 15).

The POD allows us to separate the contribution of co-
herent structures to the (spatial) power spectrum. In-
deed, the Fourier spectrum of the reconstructed field
has a slope of about —5. Therefore, we can associate
the steep part of the spectrum to the large-scale part of
the potential. Moreover, neglecting the small-scale fluc-
tuations, we find that the dynamics of the system can
be described by only a few independent degrees of free-
dom, given by the relevant eigenfunctions of the POD.
Moreover, the fact that the system may be described as
consisting of two components, having different statisti-
cal properties, does not allow a simple interpretation of
the power spectra found. In some sense this means that
nonuniversal behavior is present, as in the cascade inter-
pretation of 2D turbulence.

POD weights, potential t=800
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106 -

107
102 101
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FIG. 13. Power spectrum of the potential at ¢ = 500 and
800 (Wi, , = >, |¢x|?). The slopes of the spectrum are
. -

indicated at intermediate and large k.
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Reconstructed potential, t=800

T

min: -18.73
X max: 14.88

FIG. 15. Reconstruction of the field at ¢ = 800 of Fig. 12
using the first four modes of the proper orthogonal decompo-
sition.

IV. DRIVEN TURBULENCE

We also studied turbulence in the frame of the Terry-
Horton model. Although several sets of parameter values
and choices of the initial wave spectrum were studied,
we present here a simulation with §o = 1, v = 0.15,
and ¢y = 0, the computational mesh has 2562 points,
the system is in a periodic square box of size 64 (spatial
units), and the time step is At = 21073. The simulation
lasted for 200 periods. In order to test the ability of the
system to reach a stationary state we put cop = 0, then
no low-k dissipation is included. Under these conditions,
if only the inverse cascade of the energy operates, no
stationary state can be attained, since any dissipation
of the energy may compensate its accumulation at large
scales.

Starting with small-amplitude random phased waves,
the system evolves through an inverse cascade forming
large-scales structures. After a rapid growth of the en-
ergy due to the linear instability, in spite of the absence
of dissipation at large scales, a stationary state is estab-
lished. This state is characterized by the competition

of merging like-signed monopoles and the simultaneous .

development of secondary instabilities of large vortices
which break down, a mechanism that we also observed
in the pure decay case. Many of the elementary processes
(fusion and breaking of monopoles, vorticity concentra-
tion) are in fact similar to the decaying case; the main dif-
ference is in global properties: a stationary regime with
a well-developed power spectrum and stable probability
distributions is established.

Long-lived monopoles are observed. Their velocity is
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generally in the forbidden dipole velocity range (0 < v <
vg = 1) as in the decaying turbulence case. In Fig. 16
we show the potential field at ¢ = 200 and the (gener-
alized) vorticity, defined as L¢ [L is the operator given
by (1.3), we call it TH (Terry-Horton) vorticity in the
plots]; correlation between these two quantities means
that the nonlinearity in Eq. (1.2) becomes small. This
phenomenon, called nonlinearity depletion, might be re-

>
60
min: -25.47
X max: 28.66
>
s
» &/%&
10
min: -25.73
X max: 28.46
FIG. 16. Driven turbulence simulation (Terry-Horton

model). Potential and (generalized) vorticity contour plots
at ¢ = 200, in the stationary state. The liftime of individual
vortices is about ten periods.
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sponsible of the saturation and stopping of the inverse
cascade.

In order to test this idea, we perform a conditional av-
erage analysis of the potential and of the (generalized)
vorticity [32]. This consists in sampling the field in such
a way that a condition is satisfied, here we take only the

Potential Coherent Structure
oD O |
50+ _ : B

30F

T B T

T

40

20 | | Q A

10f ‘ e

10 20 30 40 50 60

Vorticity Coherent Structure

T T T T T T

60+ 1

50+ B

40t |

T 30 @

20+ q
10+ b
O 1 "y 1 1 1 1
0 10 20 30 40 50 60
X

FIG. 17. Conditional average of the potential in the sta-
tionary state of driven turbulence. The resulting structure
represents the typical form of a vortex (top). Conditional
average of the (generalized) vorticity in the stationary state
of driven turbulence. Incoherent fluctuations of the field are
smeared out, and only the typical structure survives (bottom).
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subset of (grid) points for which the potential (or the vor-
ticity) is larger than a given amplitude. For each point in
the subset we shift the field in order to put the point at
the center of the mesh (we take advantage of the periodic
boundary conditions), in this way we obtain an image of
the field around the points of amplitude larger than the
threshold. We sum up all these images. We perform the
average in the stationary regime, taking the potential at
different times (separated by intervals of 10 periods to
avoid spurious correlations). In this way the fluctuating
part of the signal is smeared out and the typical form
of the coherent structure emerges. These averages are
shown in Fig. 17. We see that the vorticity field, which
is very complex (cf. Fig. 16), gives a coherent structure,
well localized as for the potential, and remarkably sharp
with respect to the background fluctuations, which com-
pletely disappeared after the averaging. In Fig. 18 we
show the scatter plot of the (generalized) vorticity versus
the potential. The functional relation between these two
quantities supports the assumption of the formation of
coherent structures, and the consequent depletion of the
nonlinearity. We stress the fact that, even if one takes the
instantaneous ¢ and L¢ of a particular vortex, one finds
a definite relation, but more noisy due to the random
contributions. This is related to the strong correlation
between the peaks of ¢ and L¢, which almost coincide in
strong vortices.

The potential power spectrum is steeper than the pure
inverse cascade spectrum, as can be seen in Fig. 19, its
slope is &~ —7.5. We may think that this difference is
due to the contribution of coherent structures. As in the
decaying turbulence case, we do not expect here a univer-
sal cascade spectrum: the coherent structures introduce
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FIG. 18. Scatter plot of the (generalized) vorticity as a
function of the potential, for the coherent structure obtained
by conditional averaging.
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FIG. 19. Power spectrum of the potential for the driven
turbulence at ¢t = 200. The slope at intermediate k is —7.5.
The corresponding energy slope is —4.5, much larger than the
inverse cascade one. Symbols are as in Fig. 13.

nonlocal interactions in Fourier space. We also note that
even at large k£ we do not observe an exponential but a
sharp algebraic decrease, although the dissipation term
becomes important for moderate values of &k ~ 2. We in-
dicate that we do not use a hyperviscosity term, as used
in other simulations. The separation of the contributions
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FIG. 20. Distribution of weights of the proper orthogonal
decomposition of the potential at ¢ = 200 of Fig. 16.
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Reconstructed potential, t=200

50 60
min: -21.24
X max: 27.6

FIG. 21. Reconstruction of the field at t = 200 of Fig. 16
using the first five modes of the proper orthogonal decompo-
sition. Essentially all the large scale features of the field are
correctly reproduced.

of coherent structures and random fluctuations can be
done by the POD, as we did in the decaying turbulence
case.

We show in Figs. 20, 21, and 22 the results of the POD
applied to the potential field at time ¢ = 200. The dis-
tribution of weights is flatter (for the low modes) than
in the case of decaying turbulence, indicating that more
components are contributing to the field. However, to
reconstruct the larger scales it is enough to keep only
M = 5 modes of the POD. The Fourier spectrum of the
reconstructed field is almost the same for M = 5 and
M = 15. We find a very steep slope at high k& (= —7.8),
which is close to the total field power spectrum. This
subset of the power spectrum corresponds to the contri-
bution of large-scale (coherent) structures, which are well
localized. We note that the POD eigenfunctions are far
from being Fourier modes, the spectrum of the super-
position of the five first modes being wide and decaying
algebraically. Moreover, the random fluctuations, absent
in these modes, must contribute to the power spectrum
with a smaller slope, closer to the cascade spectrum.

This description is confirmed by the Fourier power
spectrum of the difference between the actual potential
at t = 200 and the reconstructed potential using the first
M = 15 modes, Fig. 22 (the result is almost the same
for M as low as 5). This difference contains only the
random part of the signal, in the sense of the POD. We
note that the slope of the spectrum (= —6.2) is consis-
tent to the usual (inverse) cascade energy spectrum (at
high k we must multiply the potential spectrum by k2 to
obtain the energy spectrum). We also remark that at low
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k small scales do not contribute very much, and it has a
maximum corresponding to the maximum of the growth
rate.

There is another interesting consequence of the pres-
ence of coherent structures in the stationary state of
driven turbulence, the appearance of intermittency, in
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FIG. 22. Power spectrum of the reconstructed (top) and
of the difference (bottom) potential of Fig. 21. The recon-
structed field shows a slope slightly larger than the intermedi-
ate k slope of the original signal. The fluctuating (incoherent)
part of the signal has at large k, a slope which is closer to the
cascade spectrum slope.
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the sense of the departure from a Gaussian distribution
of the vorticity. Obviously, the generalized vorticity of
the Hasegawa-Mima equation is no longer conserved in
this driven-dissipative case, therefore, as in case (ii) of de-
caying turbulence, evolution towards non-Gaussian dis-
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FIG. 23. Histograms of the potential and (generalized) vor-
ticity in the stationary state of driven turbulence. Log-log
plot, the reference Gaussian appears as an inverted parabola.
The values of the skewness and kurtosis are small, but the
x> test shows the non-Gaussian character of the distribution
of the vorticity. Potential fluctuations are close to Gaussian.
The histogram is obtained from the signal in the period be-
tween t = 150 and ¢ = 200.
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tribution of the vorticity (and its moments) is possible.
We show in Fig. 23 the histograms of the potential and
the vorticity L$. The potential fluctuations (time aver-
age) are almost Gaussian. However, the vorticity shows
a significant departure from Gaussian statistics. The in-
termittency is related to the coherence introduced by the
large vortices, which contain, as found in the POD anal-
ysis, a large Fourier spectrum. Moreover, the histogram
of the reconstructed potential and vorticity fields (using
the first modes of the POD) are almost identical to the
full fields. This means that coherent structures are rele-
vant in determining the statistical properties of the sys-
tem. However, the relation between intermittency and
coherent structures is somewhat subtle. Intermittency is
effectively related to the presence of such structures, but
the mean contribution to non-Gaussian statistics comes
from the small-scale fluctuations. Indeed, the vorticity
field consists of isolated vortices (which may be iden-
tified from the reconstructed potential field) and small
structures concentrated in the large gradients surround-
ing the vortices. The fact that the POD components have
a wide Fourier power spectrum is an indication of their
richness in spatial scales; then large scales are correlated
to small ones. The small fluctuations are then correlated
to the coherent structures in space and in time (they are
advected by the large vortices). Even if the phases of
the small structures are random, their spatial distribu-
tion is highly nonuniform, consisting essentially in small
filaments of vorticity gradients. We remark that non-
Gaussian distribution was found in the experiments of
the Aditya tokamak [33], in the edge region where dissi-
pative drift turbulence is important.

V. DISCUSSION AND CONCLUSIONS

In the first part of this paper we studied the collision
of dipoles, as a step in our understanding of the behav-
ior of coherent structures in 2D turbulent systems. In-
deed, dipoles, which are a full localized solution of the
Hasegawa-Mima equation, are a suitable model for the
investigation of the nonlinear mechanisms of the system.

We observed in the numerical simulations that the
dipole interactions show a rich variety of processes rang-
ing from elastic collisions, similar to solitons in one di-
mension, to very inelastic ones, with merging and split-
ting of the dipoles, and monopole formation. We in-
troduced a parameter measuring the role of nonlinearity
during collision, and allowing us to classify the interac-
tions. In particular, almost elastic collision is obtained
when the turnover time of vortices is larger than the col-
lision time: large amplitude and fast structures are very
robust and survive to strong perturbations.

The generation and stability of these vortices also de-
pend on their interaction with waves. If the coupling of
the vortices and waves is weak, they are relatively sta-
ble and can be present for many turnover times. The
reason for this stability is that coherent structures are
close to a stationary solution of the dynamical equation;
there is a strong correlation between potential and gen-
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eralized vorticity, assuring that nonlinearity is small. On
the other hand, they have translation velocities larger
than the phase velocity of waves, and thus their coupling
is also small.

This picture is confirmed by the study of dipoles when
(linear) unstable modes and dissipation are added to the
system. If the perturbation is strong enough to stop the
vortex, it is destroyed by emission of waves. But, depend-
ing on the internal parameters of the dipole, it can sur-
vive, being slowly damped or separated into monopoles
after collision with other dipoles.

Moreover, these numerical simulations of vortex colli-
sions show that the role of radiation is fundamental. The
formation of monopoles is accompanied by the emission
of drift waves; even if the monopole structure is close to
a stationary solution, while it moves it leaves a wake of
drift waves. A theory of vortex interaction should take
into account these radiative processes. This is perhaps
the reason why a consistent point vortex model of the
Hasegawa-Mima equation is not possible, in opposition
to the case of Euler equation, where linear waves are
missing [41,42,44].

The decaying turbulence in the frame of the Hasegawa-
Mima model appears to be essentially different from the
2D hydrodynamic case. An initial Gaussian field evolves
to a quasistationary state after a transitory, where, in
accordance to the inverse cascade theory, several gen-
erations of vortex merging are produced. The quasis-
tationary state, in the sense that spatial and statisti-
cal properties change slowly (with respect to linear and
turnover times), is reached when the size of vortices sta-
bilizes through breaking of large structures. Therefore,
in contrast to the Euler system, we do not observe an ap-
proach to an equilibrium state, where the system consists
in a pair of vortices occupying the box size. The complex-
ity of the field at long times is related to the appearance
of a nonlinear scale, probably related to the values of the
(approximate) integrals of motion and to the “extra” de-
grees of freedom represented by the waves. Indeed, the
nonlinear scale (independent to the box size) allows the
existence of localized structures (monopoles or dipoles)
interacting weakly, and then, these structures can be su-
perposed at random to obtain a complex spatial distribu-
tion. On the other hand, although weak, their coupling
with waves impedes the condensation to the largest avail-
able length scale.

In the case of a very small dissipation term (in our
simulations we do not use hyperviscosity), we note the
increase of the fluctuation level, but without destroy-
ing the large-scale self-organization. The coherent struc-
tures, which dominate, from a dynamical point of view,
this self-organized state, can be described by a few de-
grees of freedom, and on the other hand, they contribute
to a rather steep slope to the power spectrum. We
showed, using the proper orthogonal decomposition, that
only four eigenfunctions were sufficient to reconstruct the
large scales of the potential field.

Some general features of the decaying turbulence are
also present in the case of driven (with instability and
dissipation) turbulence: an initial transitory passing
through the inverse cascade steps (towards a condensa-
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tion to large scales), but now characterized by the dom-
inance of the unstable modes, and in particular their
anisotropy; the transitory is followed by the formation
of large vortices, associated with a highly complex distri-
bution of the (generalized) vorticity; finally a stationary
state is set up, where vorticity and potential are well
correlated. In contrast to the pure decay case, the coher-
ent structures are strongly perturbed and their lifetime
is only a few turnover times. However, the basic mecha-
nisms, like merging of equal sign monopoles or breaking
of the largest ones, are similar in both cases.

An interesting problem in driven turbulence is the
mechanism of saturation of the instability, and the stop-
ping of the inverse cascade of energy, which normally
would drive the system to an accumulation of the energy
at large scales. We first note that in fact the mere forma-
tion of coherent structures invalidates the pure cascade
description of turbulence. Indeed, in terms of Fourier
modes, correlation of phases and even nonlocal interac-
tions (in Fourier space) are indispensable to vortex emer-
gence. The precise mechanism of saturation of turbulence
is not known, but simulations show that one important
process is the breaking of large monopoles: this is a di-
rect “cascade” in Fourier space (not necessarily local),
opposite to the normal cascade of energy towards large
scales. In addition to the breaking of vortices, what is
essential in the setup of the stationary state (dissipation
is absent at large scales) is the mechanism of nonlinear-
ity depletion, related to the coherent structures, because
they establish a relation between potential and vorticity,
diminishing by the way the nonlinear part of the equa-
tions and then the source of the inverse cascade.

We demonstrate the existence of this correlation be-
tween potential and vorticity in the turbulent state, using
the technique of conditional averaging. We found that
there is no systematic shift between maxima of potential
and vorticity, and we obtained, by averaging in space and
time, the fields satisfying that their amplitude is larger
than a threshold, a strong functional relation, although
nonlinear as in the case of the monopoles formed after
dipole collision.

One of our most interesting results is the application of
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the POD to separate the contribution to the Fourier spec-
trum of (spatial) large scales, the coherent structures,
and the random fluctuations. We showed that coherent
structures contribute to a power spectrum decaying alge-
braically with a steep slope, and that of waves following
the inverse cascade spectrum. This diagnostic also con-
firms the view that the self-organized state of plasma drift
turbulence consists essentially in a coherent part, which
is in some sense of low (dynamical) dimension, and a field
of random waves.

Finally we found that the probability distribution of
the potential amplitudes follows approximately a Gaus-
sian statistics, while the vorticity is non-Gaussian, which
can be interpreted as a manifestation of intermittency.
The departure from Gaussian statistics is then not di-
rectly related to the presence of coherent structures, but
apparently we must take into account the contribution of
small scales. Indeed, the potential is much more smooth
than the vorticity field to small scales, in particular in
the vorticity field there are steep gradients and regions of
rather flat profile, which are the main source of intermit-
tency. It would be interesting to establish in a more rigor-
ous way the relation between intermittency and coherent
structures, in particular using a spatiotemporal analy-
sis. In fact, an understanding of the mechanism of self-
organization of the vorticity field in long-lived and cor-
related localized structures, superposed to a background
field of fluctuations, is essential to a dynamical theory of
intermittency.
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